In the previous article I wrote about how to
implement partial application and piping using operator overloading and decorators. But we
can use a bit different approach – AST transformation.
For example we have code:
def add(x, y):
return x + y
addFive = add(..., 5)
print(addFive(10))
We can look to AST of this code using ast
module from standard library and dump
function from gist:
import ast
code = open('src.py') # the previous code
tree = ast.parse(code)
print(dump(tree))
It would be like:
Module(body=[
FunctionDef(name='add', args=arguments(args=[
arg(arg='x', annotation=None),
arg(arg='y', annotation=None),
], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[]), body=[
Return(value=BinOp(left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load()))),
], decorator_list=[], returns=None),
Assign(targets=[
Name(id='addFive', ctx=Store()),
], value=Call(func=Name(id='add', ctx=Load()), args=[
Ellipsis(),
Num(n=5),
], keywords=[])),
Expr(value=Call(func=Name(id='print', ctx=Load()), args=[
Call(func=Name(id='addFive', ctx=Load()), args=[
Num(n=10),
], keywords=[]),
], keywords=[])),
])
And we can easily spot call with ellipsis argument:
Call(func=Name(id='add', ctx=Load()), args=[
Ellipsis(),
Num(n=5),
], keywords=[])
We need to wrap each call with ellipsis in lambda and replace ...
with the lambda’s argument. We can do it with ast.NodeTransformer
.
It calls visit_Call
method for each Call
node:
class EllipsisPartialTransform(ast.NodeTransformer):
def __init__(self):
self._counter = 0
def _get_arg_name(self):
"""Return unique argument name for lambda."""
try:
return '__ellipsis_partial_arg_{}'.format(self._counter)
finally:
self._counter += 1
def _is_ellipsis(self, arg):
return isinstance(arg, ast.Ellipsis)
def _replace_argument(self, node, arg_name):
"""Replace ellipsis with argument."""
replacement = ast.Name(id=arg_name,
ctx=ast.Load())
node.args = [replacement if self._is_ellipsis(arg) else arg
for arg in node.args]
return node
def _wrap_in_lambda(self, node):
"""Wrap call in lambda and replace ellipsis with argument."""
arg_name = self._get_arg_name()
node = self._replace_argument(node, arg_name)
return ast.Lambda(
args=ast.arguments(args=[ast.arg(arg=arg_name, annotation=None)],
vararg=None, kwonlyargs=[], kw_defaults=[],
kwarg=None, defaults=[]),
body=node)
def visit_Call(self, node):
if any(self._is_ellipsis(arg) for arg in node.args):
node = self._wrap_in_lambda(node)
node = ast.fix_missing_locations(node)
return self.generic_visit(node)
So now we can transform AST with visit
method and dump result:
tree = EllipsisPartialTransform().visit(tree)
print(dump(tree))
And you can see changes:
Module(body=[
FunctionDef(name='add', args=arguments(args=[
arg(arg='x', annotation=None),
arg(arg='y', annotation=None),
], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[]), body=[
Return(value=BinOp(left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load()))),
], decorator_list=[], returns=None),
Assign(targets=[
Name(id='addFive', ctx=Store()),
], value=Lambda(args=arguments(args=[
arg(arg='__ellipsis_partial_arg_0', annotation=None),
], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[]), body=Call(func=Name(id='add', ctx=Load()), args=[
Num(n=5),
Name(id='__ellipsis_partial_arg_0', ctx=Load()),
], keywords=[]))),
Expr(value=Call(func=Name(id='print', ctx=Load()), args=[
Call(func=Name(id='addFive', ctx=Load()), args=[
Num(n=10),
], keywords=[]),
], keywords=[])),
])
AST is not easy to read, so we can use astunparse for transforming
it to source code:
from astunparse import unparse
print(unparse(tree))
Result is a bit ugly, but more readable than AST:
def add(x, y):
return (x + y)
addFive = (lambda __ellipsis_partial_arg_0: add(5, __ellipsis_partial_arg_0))
print(addFive(10))
For testing result we can compile AST and run it:
exec(compile(tree, '<string>', 'exec'))
# 15
And it’s working! Back to piping, for example we have code:
"hello world" @ str.upper @ print
It’s AST would be:
Module(body=[
Expr(value=BinOp(left=BinOp(left=Str(s='hello world'),
op=MatMult(),
right=Attribute(value=Name(id='str', ctx=Load()), attr='upper', ctx=Load())),
op=MatMult(),
right=Name(id='print', ctx=Load()))),
])
BinOp
with op=MatMult()
is place where we use matrix multiplication operator.
We need to transform it to call of right part with left part as an argument:
class MatMulPipeTransformation(ast.NodeTransformer):
def _replace_with_call(self, node):
"""Call right part of operation with left part as an argument."""
return ast.Call(func=node.right, args=[node.left], keywords=[])
def visit_BinOp(self, node):
if isinstance(node.op, ast.MatMult):
node = self._replace_with_call(node)
node = ast.fix_missing_locations(node)
return self.generic_visit(node)
Transformed AST would be:
Module(body=[
Expr(value=Call(func=Name(id='print', ctx=Load()), args=[
Call(func=Attribute(value=Name(id='str', ctx=Load()), attr='upper', ctx=Load()), args=[
Str(s='hello world'),
], keywords=[]),
], keywords=[])),
])
And result code is just a nested calls:
print(str.upper('hello world'))
# HELLO WORLD
So now it’s time to combine both transformers. For example we have code:
from functools import reduce
import operator
range(100) @ filter(lambda x: x % 2 == 0, ...) \
@ map(lambda x: x ** 2, ...) \
@ zip(..., range(200, 250)) \
@ map(sum, ...) \
@ reduce(operator.add, ...) \
@ str.format('result: {}', ...) \
@ str.upper \
@ print
We can transform and run it with:
code = open('src.py') # the previous code
tree = ast.parse(code)
tree = MatMulPipeTransformation().visit(
EllipsisPartialTransform().visit(tree))
exec(compile(tree, '<string>', 'exec'))
It’s working, output as expected is:
However result code is a bit messy:
from functools import reduce
import operator
print(str.upper((lambda __ellipsis_partial_arg_5: str.format('result: {}', __ellipsis_partial_arg_5))(
(lambda __ellipsis_partial_arg_4: reduce(operator.add, __ellipsis_partial_arg_4))(
(lambda __ellipsis_partial_arg_3: map(sum, __ellipsis_partial_arg_3))(
(lambda __ellipsis_partial_arg_2: zip(__ellipsis_partial_arg_2, range(200, 250)))(
(lambda __ellipsis_partial_arg_1: map((lambda x: (x ** 2)), __ellipsis_partial_arg_1))(
(lambda __ellipsis_partial_arg_0: filter((lambda x: ((x % 2) == 0)), __ellipsis_partial_arg_0))(
range(100)))))))))
This approach is better then previous, we don’t need to manually wrap all functions with ellipsis_partial
or
use _
helper. Also we don’t use custom Partial
. But with this approach we
need to manually transform AST, so in the next part I’ll show how we
can do it automatically with module finder/loader.
Gist with sources, previous part,
next part.